Secret Sharing for NP

llan Komargodski

Moni Naor

Eylon Yogev

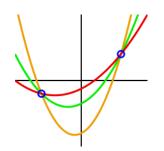
Weizmann Institute of Science

Secret Sharing

- Dealer has secret S.
- Gives to users P_1 , P_2 , ..., P_n shares Π_1 , Π_2 , ..., Π_n .
 - The shares are a **probabilistic function of** *S*.
- A subset of users X is either authorized or unauthorized.

Goal:

- Π(X,5)
- An authorized X can reconstruct S based on their shares.
- An unauthorized X cannot gain any knowledge about S.
- Introduced by Blakley and Shamir in the late 1970s.
 - Threshold secret sharing



unauthorized

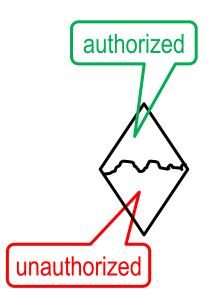
2

authorized

Access Structures

Access Structure M:

- An indicator function of the authorized subsets.
- To make sense: M should be monotone:
 if X' ⊂ X and M(X')=1 then M(X)=1



Perfect secret sharing scheme:

For any two secrets S₀, S₁, subset X s.t. M(X)=0:

$$Dist(\Pi(X,S_0)) = Dist(\Pi(X,S_1)).$$

Or equivalently: for any distinguisher **A**:

$$|Pr[A(\Pi(X,S_0)) = 1] - Pr[A(\Pi(X,S_1)) = 1]| = 0$$

The **complexity** of the scheme: the **size** of the largest share.

Known Results

Theorem [Ito, Saito and Nishizeki 1987]:

For every **M** there exists a perfect secret sharing scheme

- might have exponential size shares in the number of parties.

Theorem [Benaloh-Leichter 1988]:

If **M** is a **monotone formula** Φ : there is a perfect secret sharing scheme where the size of a share is proportional to $|\Phi|$.

Karchmer-Wigderson generalized this results to monotone span programs [1993]

Major question: can we prove **a lower bound on the size** of the shares for **some** access structure?

Even a non constructive result is interesting

Computational Secret Sharing

Perfect secret sharing scheme:

Any unauthorized subset **X** gains absolutely **no** information:

- For any A, secrets S_0 , S_1 , subset X s.t. M(X)=0: $|Pr[A(\Pi(X,S_0)) = 1]-Pr[A(\Pi(X,S_1)) = 1]|=0$.

Computational secret sharing scheme:

Any unauthorized subset X gains no useful information: $\Pi(X,S_0) \approx \Pi(X,S_1)$

In the **indistinguishability** of encryption style:

For any PPT A, two secrets S_0 , S_1 , subset X s.t. M(X)=0: $|Pr[A(\Pi(X,S_0)) = 1] - Pr[A(\Pi(X,S_1)) = 1]| < neg$

Computational Secret Sharing

Theorem [Yao~89]:

If **M** can be computed by a **monotone** poly-size circuit **C** then:

There is a **computational** secret sharing scheme for **M**.

- Size of a share is proportional to |C|.
- Assuming one-way functions.

Construction similar to Yao's garbled circuit

- What about monotone access structure that have small non-monotone circuits?
 - Matching:
 - Parties correspond to edges in the complete graph.
 - Authorized sets: the subgraphs containing a perfect matching.

Open problem: do all monotone functions in P have computational secret sharing schemes?

Secret Sharing for NP

Rudich circa 1990

What about going beyond P?

- Efficient verification when the authorized set proves that it is authorized
 - Provide a witness

Example:

- Parties correspond to edges in the complete graph.
- Authorized sets: subgraphs containing a Hamiltonian Cycle.
- The reconstruction algorithm should be provided with the witness: a cycle.

Secret Sharing and Oblivious Transfer

Theorem:

If one-way functions exist and a computationally secret sharing scheme for the Hamiltonian problem exists then:

Oblivious Transfer Protocols exist.

- In particular Minicrypt = Cryptomania
- Construction is non-blackbox
- No hope under standard assumptions for perfect or statistical scheme for Hamiltonicity

Witness Encryption Includes × [Garg, Gentry, Sahai, Waters 2013]

- A witness encryption (Enc_L, Dec_L) for a language L∈NP:
 - Encrypt message m relative to string x: cf = Enc_L(x,m)
 - For any x ∈ L: let ct = Enc_L(x,m) and let w be any witness for x.
 Then Dec_I (ct,w) = m.
 - For any x ∉ L: ct = Enc_L(x,m) computationally hides the message m.
- Gave a candidate construction for witness encryption.
- Byproduct: a candidate construction for secret sharing for a

Multilinear Maps, Indistinguishability Obfuscation (iO)...

Our Results

If one-way functions exist then:

- Secret Sharing for NP and Witness Encryption for NP are (existentially) equivalent.
- If there is a secret sharing scheme for one NP-complete language, then there is one for all languages in NP.

Definition of secret sharing for NP

Let M be a monotone access structure in NP.

Completeness:

For any $X \le 1$, M(X)=1, any witness W(for X), and any secret S:

$$recon(\Pi(X,S),w) = S.$$

All operations polytime

Definition of secret sharing for NP: Security

Let M be a monotone access structure in NP.

Security:

For any adversary $A = (A_{samp}, A_{dist})$ such that A_{samp} chooses two secrets S_0, S_1 and a subset X it holds that:

$$|Pr[M(X)=0 \land A_{dist}(\Pi(S_0,X))=1] - Pr[M(X)=0 \land A_{dist}(\Pi(S_1,X))=1]| < neg.$$

This is a static and uniform definition

 A weaker possible definition is to require that X is always unauthorized.

The Construction

For access structure $M \in \mathbb{NP}$.

- Define a new language M'∈NP:
 - Let c_1 , ..., c_n be n strings.
 - Then $M'(c_1,...,c_n) = 1$ iff M(X) = 1 where:

$$X_{i} = \begin{cases} 1 \text{ if exist } r_{i} \text{ s.t. } c_{i} = com(i, r_{i}) \\ 0 \text{ otherwise} \end{cases}$$

Computationally hiding: $com(x_1) \approx com(x_2)$ Perfect Binding: $com(x_1)$ and $com(x_2)$ have disjoint support.

Can be constructed from one-way functions in the CRS model with high probability.

The Construction...

Dealer(S):

- Choose $r_1, ..., r_n$ uniformly at random.
- For i∈[n], compute c_i =com(i, r_i).
- Compute ct = WE.Enc_{M'}(($c_1, ..., c_n$),S).
- Set Π_i = (r_i, ct) .

Shared by all

The message

Reconstruction: authorized subset X of parties: M(X)=1 and witness w witness for X.

- Witness for M' consists of openings r_i such that $X_i=1$.
- Set $w' = (r'_1, ..., r'_n, w)$.

Security

Suppose an adversary $A=(A_{samp}, A_{dist})$ breaks the system.

- Construct an algorithm D that breaks the commitment scheme:
 - For a list of commitments c_1 , ..., c_n distinguish between two cases:
 - They are commitments of 1, ..., n.
 - They are commitments of n+1, ..., 2n.

Open Problems

Brakerski: diO

- Adaptive choice of the set X.
- Perfect Secret-Sharing Scheme for directed connectivity.
 - How to cope with the fan-out
- Computational Secret Sharing Scheme for Matching.
 - How to cope with negation?
- A secret sharing scheme for P based on less heavy cryptographic machinery.

ITCS 2015 at the Weizmann Institute of Science

January 11-13, 2015

The 6th Innovations in Theoretical Computer Science (ITCS) conference, will be held at the Weizmann

Institute of Science, Israel

http://www.wisdom.weizmann.ac.il/~naor/itcs2015_main.html

Sponsored by ACM SIGACT

